Note on the determination of

Characteristic Value of Observations

by Ervin Poulsen
Professor Emeritus of C.Eng.
e-mail: ervin-poulsen@get2net.dk

2001-02-18

According to the EN 1504-standards, the EN 206 and the Euronorm ENV 1992-1-1 the lower characteristic value shall be the 5 % fractile and the upper characteristic value shall be the 95 % fractile.

In order to determine the characteristic value of observations obtained from testing concrete or similar materials it is convenient to make the following assumptions:

- The lower characteristic value is defined as the 5 % fractile.
- The upper characteristic value is defined as the 95 % fractile.
- The characteristic value shall be determined from observations at a level of confidence of $\alpha = 84.1\%$.
- The observations from the testing are assumed statistically to be logarithmic normally distributed.
- The coefficient of variation is unknown.

In the case of $n \ge 3$ observations (e.g. strengths) from one single section of inspection, calculation of the characteristic value of the following observations:

$$f_1, f_2, f_3, ..., f_n$$
 (1)

are carried out as follows: first the mean value M_{lnf} and the standard deviation S_{lnf} of the Napir logarithm of the observations (1), i.e. the values:

$$\ln f_1, \ln f_2, \ln f_3, ..., \ln f_n$$
 (2)

are carried out. The easiest way is to apply a spreadsheet, e.g. Excel, cf. example 1. Then the lower characteristic value (5 % fractile) is:

$$f_{kl} = \exp(\mathbf{M}_{\ln f} - k_n \cdot \mathbf{S}_{\ln f}) \tag{3}$$

and the upper characteristic value (95 % fractile) is:

$$f_{ku} = \exp\left(\mathbf{M}_{\ln f} + k_n \cdot \mathbf{S}_{\ln f}\right) \tag{4}$$

The factor k_n is based upon the non-central *t*-distribution and obeys the values shown in Table 1:

n	3	4	5	6	7	8	9	10	11	12	15	20	30	50	100
k_n	4.11	3.28	2.91	2.70	2.57	2.47	2.40	2.34	2.29	2.25	2.16	2.07	1.98	1.89	1.81

Table 1. Values of the factor k_n in equation (3) and (4).

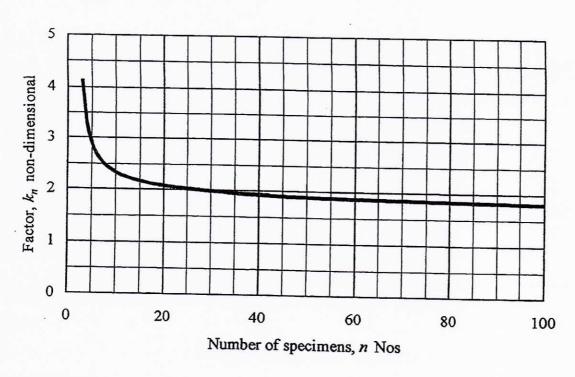


Figure 1. The factor k_n versus the number of observations n.

EXAMPLE 1. The following compressive strengths have been determined by means of the pull-out test method (CAPO-test) from one inspection section:

27.5 25.0 24.5 25.0 22.5 24.0 25.5 28.5 25.0 30.0 MPa

Calculation of the lower characteristic value (5 % fractile) is carried out in the following way, applying a spreadsheet, cf. table 2:

	Compressive strength, f_c MPa	$\ln f_c$
f_{c1}	27.5	3.14186
f_{c2}	25.0	3.21888
f_{c3}	24.5	3.19867
<i>f</i> ₀ 4	25.0	3.21889
f _e 5	22.5	3.11352
<i>fc</i> 6	24.0	3.17805
fc7	25.5	3.23868
f_{c8}	· 28.5	3.34990
fc9	25.0	3.21888
<i>fc</i> 10	30.0	3.40120
Mean value	25.75	3.24508
Standard deviation	2.252	0,08576
Coefficient of variation	0.087	-
Lower characteristic value	21.00	_

Table 2. Calculation of the lower characteristic value of observed compressive strength.

Ervin Poulsen: Note on the determination of Characteristic Value of Observations In Table 2 the mean value and the standard deviations of the logarithms of the compressive strengths are determined as $M_{lnf} = 3.24508$ and $S_{lnf} = 0.08576$ respectively. Thus, the lower characteristic value (5 % fractile) yields:

$$f_k = \exp(M_{\ln f} - k_n \times S_{\ln f}) = \exp(3.24508 - 2.34 \times 0.08576) = 21.00 \text{ MPa}$$

EXAMPLE 2. In a 450 m² overlay casting the following values of pull-off strengths were determined using 75 mm diameter dollies:

Calculation of the lower characteristic value (5 % fractile) is carried out in the following way, applying a spreadsheet, cf. table 3:

	Pull-off strength, f_t MPa	$\ln f_t$	
f_{t1}	1.85	0.6152	
fa	1.91	0.6471	
f_{t3}	1.56	0.4447	
f_{t4}	1.42	0.3507	
f_{t5}	1.88	0.6313	
ft6	1.69	0.5247	
Mean value	1.718	0.5356	
Standard deviation	0.198	0.1187	
Coefficient of variation	11.5 %	_	
Lower characteristic value	1.240		

Table 3. Calculation of the characteristic value of observed pull-off strength.

In Table 3 the mean value and the standard deviations of the logarithms of the pull-off strengths are determined as $M_{lnf} = 0.5356$ and $S_{lnf} = 0.1187$ respectively. Thus, the lower characteristic value (5 % fractile) yields:

$$f_{lk} = \exp(M_{\ln f} - k_n \times S_{\ln f}) = \exp(0.5356 - 2.70 \times 0.1187) = 1.240 \text{ MPa}$$

EXAMPLE 3. The chloride measurements by RCT (Rapid Chloride Test) in a 10×25 m bridge slab at a depth of 20-25 mm below the exposed concrete surface gave the following data:

0.160 0.154 0.185 0.176 0.192 0.174 % chloride by mass concrete

Calculation of the upper characteristic value (95 % fractile) is carried out in the following way, applying a spreadsheet, cf. table 4.

In Table 4 the mean value and the standard deviation of the logarithms of the chloride contents are determined as $M_{lnC} = -1.7545$ and $S_{lnC} = 0.08405$ respectively. Thus, the upper characteristic value (95 % fractile) yields:

$$C_{uk} = \exp(M_{\ln C} + k_n \times S_{\ln C}) =$$

= $\exp(-1.7545 + 2.70 \times 0.08405) = 0.2171$ chloride % mass concrete

Ervin Poulsen: Note on the determination of Characteristic Value of Observations

	Chloride, C % mass concrete	ln C	
C_1	0.160	- 1.8326	
C_2	0.154	- 1.8708	
C_3	0.185	- 1.6874	
C ₄	0.176	- 1.7373	
C ₅	0.192	- 1.6503	
C ₆	0.174	- 1.7487	
Mean value	0.1735	- 1.7545	
Standard deviation	0.0144	+ 0.08405	
Coefficient of variation	8.30 %		
Upper characteristic value	0.2171		

Table 4. Calculation of the upper characteristic value of observed chloride contents.

EXAMPLE 4. The measurements of the w/c-ratio (by thin section technique) of concrete from a pre-casting gave the following data:

0.37 0.38 0.36 (non-dimensional)

Calculation of the upper characteristic value (i.e. 95 % fractile) is carried out in the following way, applying a spreadsheet, cf. table 5.

In Table 5 the mean value and the standard deviation of the logarithms of the w/c-ratios are determined as $M_{lnw/c} = -1.7545$ and $S_{lnw/c} = 0.08405$ respectively. Thus, the upper characteristic value (95 % fractile) yields:

$$(w/c)_{uk} = \exp(\mathbf{M}_{\ln w/c} + k_n \times S_{\ln w/c}) =$$

= $\exp(-0.9945 + 4.11 \times 0.02703) = 0.385 \text{ (non-dimensional)}$

	w/c-ratio, non-dimensional	ln w/c
w/c_1	0.37	- 0.9943
w/c_2	0.38	- 0.9676
w/c ₃	0.36	-1.0217
Mean value	0.370	- 0.99450
Standard deviation	0.010	+ 0.02703
Coefficient of variation	2.70 %	LJ
Upper characteristic value	0.385	_

Table 5. Calculation of the upper characteristic value of observed w/c-ratios.