Workshop

- Ultrasonic pulse-velocity
- Impact-echo method
- Impulse-response method
- Ultrasonic-echo method

Acknowledgement Dr. Allen Davis (Deceased) CTL Group, Skokie, IL USA

Test smart – Build right

Impulse-Response Method

- Originated as method to test deep foundations (transient dynamic response method)
- Requires measurement of impact force
- Frequency domain method
- Lower frequency than impact-echo (0 to 1 kHz)
- Signal processing examines the impact response per unit of applied force as a function of frequency

Impulse Response

GI

Low Strain Tests of Piles

Designation: D 5882 – 00

Standard Test Method for Low Strain Integrity Testing of Piles¹

This standard is issued under the fixed designation D 5882; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (s) indicates an editorial change since the last revision or reapproval.

^{1. s} This test method covers the procedure for determining the integrity of individual vertical or inclined piles by measuring and analyzing the velocity (required) and the force (optional) response of the pile induced by an impact device applied axially to the pile, normally at the pile head.

establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. FIG. 1 Typical Velocity Traces Generated by the Apparatus for Obtaining Dynamic Measurements

Impulse-Response Test System

GI

Response Functions

Measured Response	Transfer Function: Units
Displacement	Receptance: m/N
Velocity	Mobility: (m/s)/N
Acceleration	Accelerance: (m/s²)/N

Signal Processing Method

Idealized Mobility Plot of Pile

Frequency (Hz)

Test smart – Build right

GI

10

Application to Plates

- Work by Dr. Davis and colleagues demonstrated that I-R could be used successfully to assess plate-like structures
- Comparative test to assess differences in impact response within a structure
 - > Locate anomalous regions
 - Verification with other techniques
- For rapid screening of suspect structures

ASTM C1740

Designation: C1740 – 10

Standard Practice for Evaluating the Condition of Concrete Plates Using the Impulse-Response Method¹

This standard is issued under the fixed designation C1740; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice provides the procedure for using the impulse-response method to evaluate rapidly the condition of concrete slabs, pavements, bridge decks, walls, or other plate-like structures.

1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro-

for additional terms related to nondestructive ultrasonic examination that are applicable to this practice.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *impulse-response method*, *n*—a nondestructive test method based on the use of mechanical impact to cause transient vibration of a concrete test element, the use of a broadband velocity transducer placed on the test element adjacent to the impact point to measure the response, and the use of signal processing to obtain the mobility spectrum of the test element.

3.2.1.1 Discussion—Fig. 1 shows the testing configuration

Hammer and Geophone Position

s'MASH System for Impulse-Response Testing

Hammer and Geophone

Computer with Software

Test smart – Build right

s'MASH Software and Display

Computed parameters

GI

Parameters from Mobility Plot

- Various parameters computed from the mobility plot are used as indicators of conditions at test point
 - > Dynamic stiffness (initial slope 0 to 50 Hz)
 - > Average mobility (100 to 800 Hz)
 - > Ratio of peak mobility to mean mobility (voids index)
 - > Slope of mobility vs. frequency

Example: I-R Test of Slab

FREQUENCY (Hz)

GI

17

Average Mobility of Plate

- I-R test causes flexural vibration of plate within vicinity of impact ($\approx 600 \text{ mm}$ radius)
- Average mobility is affected by
 - > Quality of the concrete (C_p)
 - Presence of internal voids or damage
 - Plate thickness
 - > Support conditions
- High mobility means that plate is more flexible at the test point

Void Below Slab

GI

19

High Peak at Low Frequency: Indicates Void Below Slab

Test smart – Build right =

Peak-to-Mean Mobility Ratio (Voids Index)

- The ratio of peak mobility value between 0 to 100 Hz to average mobility between 100 to 800 (ASTM C1740)
- If value exceeds 2, there is high probability of void below slab at test point
- Principle is also applicable to detection of delaminations

Mobility Slope

- Slope of best-fit line to mobility spectrum between 100 and 800 Hz
- A high mobility slope has been found to correlate with presence of poorly consolidated concrete

Mobility Slope

Test smart – Build right

24

Testing for voids behind tunnel lining

Testing for honeycombed concrete in slip-formed silo

Testing for delaminations in dam spillway

Test smart – Build right

Testing for load transfer at joints between panels of tank

Testing for delaminations and honeycombed concrete of bridge piers

Testing for quality of anchorage of granite panels on high-rise building

Testing for internal cracking and debonding of terracotta cladding

Testing limestone cladding for cracks and debonding

GI

Testing

- Tests are typically carried out on grid
 - > Grid spacing depends on size of defects to be detected (400 to 600 mm is typical)

One-way Testing

Test smart – Build right

Testing—New Software

= Test smart – Build right

GI

34

Testing in Progress

GI

Data Presentation

- Mobility values at test points are evaluated on a comparative basis
- Calculated values at grid points are displayed as contour plots
 - Data transferred to Excel for contour plots of calculated parameters
- Anomalous regions are identified
- Further testing to confirm findings
 - > Impact-echo
 - > Invasive probing (coring, drilling)

Example of Contour Plot

Average mobility for slab-on-ground

GI

Examples

- Evaluation of delaminations in soffit of 35-year old bridge to plan repair work
- Evaluation of delaminations in bare concrete bridge deck (U.S. research project)

Bridge Soffit

Courtesy: Ramboll ³⁹

Test smart – Build right

Average Mobility

40

Core 1, Delamination

Test smart – Build right

41

Core 2, Delamination

Test smart – Build right

GI

Core 3, Solid

□ 0-4 ■ 4-8 ■ 8-12 □ 12-16 ■ 16-20

Courtesy: Ramboll

43

Test smart – Build right

Bridge Deck Evaluation SHRP 2 Program

Test smart – Build right

Results

Average Mobility

Voids Ratio

Repeatability-Line D

Mobility

47

Verification of Delaminations by Impact-Echo

Summary

- Impulse-response provides a means for rapid screening of suspect structures
- Test results are analyzed on a comparative basis within tested structure
- Identifies potentially anomalous regions for further investigation

SHRP 2 Program www.trb.org

- Renewal Program: Investigate technologies and institutional solutions to support systematic rehabilitation of highway infrastructure in a way that is rapid, presents minimal disruption to users, and results in long-lasting facilities.
- NDT Toolbox: Summaries of NDT technologies; recommended test procedures; samples of data output; guidance on interpreting and presenting results; and equipment features.

NDT Toolbox www.ndtoolbox.org

Technologies

Spectroscopy

Cracking

QA/QC

51

Se