Air-Void Analyzer (AVA) Air-Void Parameters in Fresh Concrete

Outline

- Benefits of entrained air
- How entrained air protects concrete during freezing
- Air-void parameters
- Principle of the AVA
- Kansas DOT movie
- Conclusion

Concrete

Coarse aggregate

Mortar

- Binder
- Water
- Fine aggregate

Air

- Entrapped orEntrained

G

Entrapped vs. Entrained Air

Entrapped Air	Entrained Air
Irregular shape; large size	Spherical shape; small size
Introduced during mixing	Introduced during mixing with air entraining agent
No practical benefit	Improves properties of fresh concrete; enhances resistance to freezing and thawing cycles; enhances resistance to other forms of chemical attack

Freezing of Saturated Concrete

- Water expands in volume by 9 % when it freezes
- This expansion introduces tensile stresses that are sufficient to crack the concrete
- Cycles of freezing and thawing will turn concrete to rubble

Outdoor Exposure to Freezing and Thawing 40 years

Air-entrained concrete

From: PCA

F-T Damage in Pavements

Source: PCA

Test smart – Build right

Air-Entrained Concrete

- Air-entraining cement
- Air-entraining agent (an admixture)
 - ➤ Lowers surface tension of water → enhances incorporation of bubbles
 - Impedes bubble coalescence
 - Anchors bubbles to cement and aggregate particles

Air Entraining Agents

- Surfactants that allow formation of small, stable air voids during mixing
- Molecules have polar (hydrophilic) and non-polar (hydrophobic) ends
 Polar end into paste
 - Non-polar end into air
 - > Air voids repel

www.tego.de

Entrained Air Voids

 During freezing, air void provides space to accommodate expansion of freezing water

Entrained Air Voids

 During thawing, water is expelled from air void because of hydrophobic layer

Protected Paste Volume

 The portion of hardened cement paste that is protected from the effects of freezing by proximity to an entrained air void

Effect of Void Size 10 % Air

Traditional Air Content Tests

From: PCA

 Measures total air content (entrapped air and entrained air)

- No fixed relationship between total air content and air-void structure
- Need an indicator of the size of the air voids
 - Spacing factor
 - Specific surface

Spacing Factor - *L*

- Index related to the maximum distance of any point in the cement paste from the periphery of an air void.
- Generally: needs to be < 0.2 mm for adequate resistance to freezing and thawing

Specific Surface of Air Void

 Specific surface—surface area per unit volume of air void

Surface Area =
$$A = 4\pi r^2$$

$$Volume = V = \frac{4}{3}\pi r^3$$

$$\frac{A}{V} = \alpha = \frac{3}{r}$$

 Generally: needs to be > 25 mm⁻¹ for adequate resistance to freezing and thawing

Air-Void Parameters of Hardened Concrete ASTM C457/C457M

Microscopical Examination

———— Test smart – Build right

Air-Void Analyzer (AVA)

- Determines the size distribution of air voids in fresh concrete
- Calculates various air-void parameters, including:
 - Air content
 - Spacing factor
 - Specific surface

AVA Procedure

Obtain mortar sample

Place sample in AVA

Stir sample in glycerol

Acquire data

Terminal Speed of Rising Bubble Stokes Law

- Large air voids rise faster
- From mass-time data
 - Determine void size distribution
 - Compute air-void parameters

www.tego.de

AVA Printout

Spacing factor 0.119 mm Specific surface 41.1 mm⁻¹

AVA Additional Information

AVA Comparison with ASTM C457/C457M

AVA Developments in US

- Focus Technology by AASHTO;
 Kansas DOT as lead agency <u>http://tig.transportation.org/Pages/AirVoidAnalyzer.aspx</u>
- AASHTO provisional standard TP-75-08: "Method of Test for Air-Void Characteristics of Freshly Mixed Concrete by Buoyancy Change"

Benefits of AVA

- Provides information on the air-void parameters at any step in production process
- Provides measure of key parameters that affect in-place durability performance
- Rapid results compared with microscopical examination of hardened samples
- Well suited for performance-based specifications of air-void parameters

K-DOT Video