Workshop

- Ultrasonic pulse-velocity method
- Impact-echo method
- Impulse-response method
- Ultrasonic-echo method (MIRA Tomographer)

Ultrasonic Echo Methods Measure round-trip "time of flight"

Ultrasonic-Echo Methods for Concrete

- Limited success before the 1990s
- Developments since the 1990s
 - Low frequency (50 to 100 kHz), broadband, dry coupled, point transducers
 - Compressional and shear waves
 - > Availability of computing power
 - Use of transducer arrays
 - Digital signal processing
 - Visualization methods (tomographic images)

Shear-Wave Transducer Arrays

- Permit multiple transit time measurements to be made rapidly
- Can "look" at volume of concrete below the array

<u>Test_smart – Build right</u>

Shear-Wave Dry, Point-Contact Transducers

- Shear-waves produce stronger reflections than P-wave in pitch-catch test with high angles of incidence/reflection
- Short duration pulse (<2 cycles)
- Coupling fluid not needed
- Spring loaded to conform to surface

DPC Transducer "Antenna"

- Each spring-loaded DPC transducer functions alternately as a transmitter and receiver
- Built-in computer controls transducer operation

6

MIRA Tomographer

- Based on "pitch-catch" method
- 4 x 12 transducer array; many ray paths
- Onboard data analysis of 2-D image display

Transducer Array System

Multiple pitch-catch tests Measure time-of-flight and echo amplitude

Transducer Array System

Transducers function as transmitters and receivers; result in multiple ray paths

Flaw Detection Regions

Reflecting interfaces located within regions near the midpoints of the transducer pairs are detected

Flaw Detection Regions

Reflecting interfaces located within regions near the midpoints of the transducer pairs are detected

MIRA Operation

- Each row functions as a transmitter or receiver
- 66 ray paths per test
- 66 time-of-flight and amplitude measurements
- Data acquisition and processing < 3s

Flaw Detection

- Large reflecting interface is detected by multiple sensors
- Extent of flaw can be estimated

Flaw Depth Calculation

- Distances between transducer pairs (i-j) are known, X_{i-i}
- Flaw depth is calculated from the measured time-of-flight, Δt_{i-j}
- Example: What is depth for measured Δt_{1-4} ?

Image Reconstruction

- For each transducer pair, signal is associated with reflection at interface located along midpoint
- Time-of-flight data are converted to "flaw depth" in accordance with method on previous slide
- Signal processing method uses this information to generate a 2-D image of the cross section below the antenna

Synthetic Aperture Focusing Technique (SAFT)

- Test object is represented by mesh of volume elements (voxels)
- Volume elements that correspond to locations of reflecting interfaces are assigned a color to indicate intensity of reflection from those elements—constructive superposition
- The result is a 2-D image of the internal reflectors below the antenna

Data Acquisition

•

The system measures the time-of-flight and signal amplitude for each transducer pair and computes the depth of the reflecting interface

Test smart – Build right =

Test smart – Build right =

Constructive Superposition Using SAFT

The result is a 2-D image of the internal reflectors

Test smart – Build right

MIRA Display EXPLORE Mode

Test smart – Build right

Scanning

- Layout grid (x-step, ystep)
- Move antenna in steps in Y-direction
- Take data at each y-step
- Move to next vertical line (x-step)
- Repeat scan in y-direction

Scan Mode

Current test point (4,4)

Point (5,10) completed

3-D Image Reconstruction

- MIRA 2-D images are transferred to a computer
- Software assembles the images to create a 3-D volume of the scanned region (analogous to "stitching" photos)
- User can manipulate the 3-D volume
 - > Rotate the volume
 - > View in three image planes (slices)

Image Planes

25

Image Planes

- B-scan: End view, created by MIRA using image reconstruction method (SAFT)
- C-scan: Plan view
- D-scan: side view
- C and D-scans created from B-scan data using visualization methods
 - Similar to 3-D medical imaging methods

3-D Visualization

Image Planes

GI

Example

0.8 m x 0.4 m x 0.4 m C_s= 2385 m/s Original MIRA

B-Scan

29

GI

Stepped Slab With Empty Ducts

Stepped Slab With Empty Ducts

Voids in Tendon Ducts

Courtesy of: Ramboll-Finland

= Test smart – Build right

Results

	p <u>17</u> 34567891011	12 13 14 15 16	17 18 pos. <u>C</u>	. 200
1	SUO IA DU T	LEIK KAUS B		LEIKKAUS B
1	SUAPUTKI NO. 5	KOHTA		
· · · · ·	C-Scan	B		●← SP 5
Y.MM.	LEIKKAUS C - SYVYYS 105-155 mm	Slice plane	WY'N	3-Scan
2	0 103 270 30C 4C0 500 600 700 800 900 1000 1100	1200 1300 1400 1500 500 1	7001800Х.мм \	
	RAUDOITUS		R	einforcement
	SUOJAPUTKI NO. 5			
jul;	LEIKKAUSD			

Voids Behind Tunnel Lining

400 mm Thick

With Grout: Weak Reflection No Grout: Strong Reflection

Test smart – Build right

With Grout

GI

Summary

- MIRA Tomographer is based on the ultrasonic pitch-catch technique
- Uses shear-wave, point transducers that require no coupling fluid
- Array of transducers allows for many timeof-flight measurements to be made rapidly
- SAFT is used to reconstruct 2-D images of internal reflectors
- Visualization software creates 3-D volume

Summary

- Can look at images in different ways (projection on planes, slices, total 3-D)
- Very useful for inspection of grouted tendon ducts
- Like all other methods, results need to be confirmed by invasive methods
 - Drilling holes
 - Drilling cores

Stress-Wave Methods

Method	Display	Application
Ultrasonic pulse velocity: through transmission	Travel time between two transducers	Uniformity
Impact-echo: based on multiple reflections	Amplitude spectrum at test point	Point test: Thickness; voids; delamination
Impulse-response: based on structural vibration	Mobility spectrum at test point	Qualitative (1 m): voids; delamination; distributed cracking; support conditions
Ultrasonic-echo (MIRA): based on single reflection (time of flight measurement)	B-scan reconstruction of region below antenna	Voids; delamination; thickness; reinforcement

GI