Correlation Testing ACI 228.1R Chapter 4

- Cast slab and companion cylinders
- Subject to similar curing
- At regular strength intervals (≥ 6)
- Test two cylinders
- Perform at least three probe penetration tests

Strength of Hardened Concrete **ASTM C900 Pullout**

anchored in concrete. Measure force to pullout an insert

- Cast-in-place (CIP): attached to formwork slab (during construction) or inserted into top surface of freshly cast
- Post-installed (PI); placed into drilled hole with undercut slot (existing construction)

CIP-Pullout Test

CIP-Pullout Test

Reaction Ring

CIP-Pullout Test

CIP Pullout Test-LOK Test

Pullout Insert

Conical Fragment

Insert Hardware

Attached to formwork cutouts

Nailed to formwork

Floated into surface

ACI 228.1R Chapter 4 Correlation Testing

- Cast 8 in. cubes with inserts on side faces and cast companion cylinders
- Subject to similar curing
- At regular strength intervals (≥ 6), such as 1, 2, 3, 7, 14 and 28 days:
- Test two cylinders
- Pullout 8 inserts (2 cubes)

Cube with Inserts

Example of Strength Relationship

Robust Correlation

Not affected by:

- Cementitious materials
- Water-cement ratio
- Age
- Air entrainment
- Admixtures
- Shape or size of aggregate up to $1\frac{1}{2}$ in.
- Lightweight aggregate, however, produces significantly different correlation

Correlation

- Pullout strength is related fundamentally to concrete strength
- Analytical studies have been performed
- > Compression-strut theory
- Fracture mechanics and aggregateinterlock theory

Pullout Failure Mechanism

Compression strut theory

Pullout Failure Mechanism

Compression strut theory

Compression Strut

Implementation

- In-place tests measure property related to concrete strength
- Empirical strength relationship is required for the specific concrete mixture
- Statistical analysis
- Develop strength relationship
- > Obtain reliable estimate of in-place strength

Analysis of In-Place Test Results Chapter 6 of ACI 228.1R

- Account for uncertainty of strength relationship (regression)
- data Account for variability of in-place test
- Account for variability of in-place concrete (batch-to-batch)

10th Percentile Strength

NIST Statistical Method

Logarithm of Cylinder Strength

Logarithm of In-Place Test Result

Incorrect Statistical Method

Logarithm of Cylinder Strength

Logarithm of In-Place Test Result

INPLACE Program

Concrete International, Dec. 1998

Developed at Purdue University with NIST funding; based on NIST procedure (Section 6.2.4 in ACI 228.1R)

Laboratory Module Database In-Place Module

Input laboratory test data and compute correlation

Input field test data and estimate strength

Data Input

In-Place Results Pullout Force, kN

St. Dev.	n Average											
1.4 8.0%	18.0					18.0	19.4	17.3	18.7	15.5	19.1	Case 1
2.7 14.9%	18.0					20.4	19.4	17.8	20.4	16.4	13.6	Case 2
2.7 14.9%	18.0	18.8	19.0	14.5	19.8	22.2	15.9	16.3	21.0	18.2	14.4	Case 3

In-Place Strength Case 1

Summary

In-place Compressive Strength, psi

$C_{0.10}/C_{avg}$	C _{0.10}	Cava	
0.86	2250	2635	Case 1
0.77	2010	2610	Case 2
0.82	2130	2610	Case 3

Summary

- Performance specifications will rely on characteristics of installed concrete tests to measure quality
- Alternatives to field-cured cylinders place strength and cores are available to assess in-
- Rely on strength-relationships
- Statistical software to evaluate test results