Overview of ACI 238.1 R-08

Report on Measurements of Workability and Rheology of Fresh Concrete

Chiara F. Ferraris, NIST USA

Importance

- Fresh concrete properties are related to the properties of hardened concrete.
- Poor placement or consolidation leads to problems of durability and placement.
- Fresh concrete properties are not always properly measured or predicted.

Workability

that property of freshly mixed concrete or mortar that <u>determines the ease</u> with which it can be <u>mixed</u>, <u>placed</u>, <u>consolidated</u>, <u>and finished</u> to a homogenous condition.

Classes of workability measurement (Tattersall 1991)

Class I qualitative Workability, flowability, compactability, finishability, pumpability, etc.	To be used only in a general descriptive way without any attempt to quantify
Class II quantitative empirical slump, compacting factor, Vebe time, flow table spread, etc.	To be used as a simple quantitative statement of behavior in a particular set of circumstances
Class III quantitative fundamental viscosity, mobility, fluidity, yield value, etc.	To be used strictly in conformity with standard definitions

Report ACI 238: Main Goal

- How to select the proper test for the application at hand?
- How to interpret the results obtained to predict the performance of the concrete in the field in the fresh state?

Workable concrete

- no flow (zero-slump)
- flow like a liquid (self-consolidating concrete [SCC])
- Anything in between

It depends on the application!!

Example of applications

- Use of gyratory tester to measure workability of no-slump concrete
- Using rheological measurements to solve problem with flooring grouts
- Measuring batch-to-batch consistency of self-consolidating concrete
- Troubleshooting self-consolidating concrete mixtures

Workability

Slump Slump flow Stability static Filling capacity Passing ability

Viscosity

Definitions Some concepts

Bingham model concept

Same Yield Stress
BUT
Different Plastic Viscosity

Same Plastic Viscosity
BUT
Different Yield Stress

Flow Curves

Viscosity definition

Non-Newtonian Viscosity

Amziane S., Ferraris C.F. "Cementitious Paste Setting Using Rheological and Pressure Measurements", ACI Materials Journal, vol. 104 #2, 2007 pp. 137-145

Yield stress

A critical shear stress value below which an ideal plastic or viscoplastic material behaves like a solid (that is, will not flow).

Once the yield stress is exceeded, a plastic material yields (deforms plastically), while a viscoplastic material flows like a liquid.

A=Yield stress
B= related to viscosity

Stress Growth Stress Growth Time

Yield stress

Yield stress is between A & B

B is taken as the yield stress as it is easily determined

Bingham

A=Yield stress
B= related to viscosity

Segregation

- Bleeding
- Segregation
- Separation
- Stability
 - stability, dynamic
 - stability, static

Segregation - Rheology

Yield stress and viscosity

Yield stress > Weight of aggregate
Aggregate stable

Yield stress < weight of aggregate Sedimentation

Depends on viscosity how fast the aggregate will settle

Consolidation From SCC to no-slump concrete

SCC:

- low yield stress
 - Flow on its own weight
- high viscosity
 - Cohesion, avoid segregation

No-slump concrete:

- High yield stress
 - Vibration reduced yield stress
- Viscosity

Finishing

leveling, smoothing, consolidating, and otherwise treating surfaces of fresh or recently placed concrete or mortar to produce desired appearance and service.

No standard tests; Related to

- The viscosity of the paste?
- Bleeding (yield stress/viscosity of bulk)?

Consistency

the degree to which a freshly mixed concrete, mortar, grout, or cement paste resists deformation

- Normal: Meets requirements for application
- Plastic: deformation would be sustained continuously in any direction without rupture.
- wettest stable: maximum water content at which cement grout and mortar will adhere to a vertical surface without sloughing.

Outline of report

- Chapter 1 —Introduction
- Chapter 2 —Rheological terms related to concrete
- Chapter 3 —Test methods, (Koehler)
- Chapter 4 —Factors affecting workability of concrete, (Billberg)
- Chapter 5 Examples of using workability test methods (Daczko, Khayat)

Acknowledgements

All members of ACI 238

- Former ACI 236A