Appendix I	
Corrosion rates by various authors	Corresponding
1. Kenneth Clear, 1989 (with K.Clear instrument)	in (mm/year)
< $0.5 \ \mu A/cm^2$ – no corrosion damage expected $0.5 - 2.7 \ \mu A/cm^2$ – corrosion damage possible after 10 to 15 years $2.7 - 27 \ \mu A/cm^2$ – corrosion damage expected in 2 to10 years >27 \ \mu A/cm^2 – corrosion damage expected in 2 years or less	<0.006 mm/year 0.006-0.030 mm/year 0.030-0.310 mm/year >0.31 mm/year
2. Carmen Andrade, 2000 (with Gecor 6 instrument)	
< $0.1 \ \mu A/cm^2$ – Negligible $0.1 - 0.5 \ \mu A/cm^2$ – Low $0.5 - 1 \ \mu A/cm^2$ – Moderate > $1 \ \mu A/cm^2$ – High	<0.001 mm/year 0.001-0.006 mm/year 0.006-0.012 mm/year >0.012 mm/year
Threshold current density in carbonated structures 0.3 μ A/cm ²	
3. Thomas Frolund, 2002 (with GalvaPulse instrument)	
< $0.5 \ \mu A/cm^2$ - passive areas $0.5 - 2 \ \mu A/cm^2$ – negligible corrosion activity $2 - 5 \ \mu A/cm^2$ – low corrosion activity $5 - 15 \ \mu A/cm^2$ – moderate corrosion activity	<0.006 mm/year 0.006-0.023 mm/year 0.023-0.058 mm/year 0.058-0.174 mm/year

 $> 15 \mu \text{A/cm}^2 - \text{high corrosion activity}$

>0.174 mm /vear

The transformation from corrosion current in μ A/cm² is made in the following manner:

Faraday's law of electrochemical equivalent states the 1 μ A/cm² corresponds to a cross section loss for carbon steel of 11.6 µm/year (0.0116 mm/year).

The corrosion rate can, therefore, be estimated from the corrosion current and the area of polarization as:

Corrosion (μ m/year) = 11.6 x I_{corr}/Area (μ A/cm²)

The corrosion current Icorr in (µA) is calculated from Stern Geary's equation Icorr=25/Rp, where Rp is the measured polarization resistance