

## **1. INTRODUCTION**

- $\succ$  One of the basic and most important properties related to concrete durability is water absorption.
- > Hall (1981) investigated that the cumulative amount of absorbed water by concrete material has a linear relationship with square root of absorption time. The slope of this trend is called sorptivity.

 $i = S.t^{-0.5}$ 

Where;

i: Cumulative volume of absorbed water per unit of area (mm<sup>3</sup>/mm<sup>2</sup>) S: Sorptivity index  $(mm/s^{0.5})$ 



> There are some standard methods to perform this test in laboratory conditions; in North America, the most common is ASTM C 1585.







 $\succ$  Two important conditioning factors affect the in-situ water absorption test results. This may cause serious misleading in concrete durability evaluation. **1.Conditioning Temperature 2.Concrete Moisture Content** 

## **Development of Concrete Water Absorption Testing for Quality Control** Babak Mohammadi and Dr. Michelle Nokken (m.nokken@concordia.ca)



# **2.EXPERIMENTAL PROGRAM**

## **D**Materials:

Test specimens were manufactured using concrete mixtures of two construction projects in Montreal, QC, Canada.

|      | Contents (Kg/m <sup>3</sup> ) |                                                            |       |        |      | Properties |               |                |
|------|-------------------------------|------------------------------------------------------------|-------|--------|------|------------|---------------|----------------|
| W/C  | Cement                        | Supplementary<br>Materials                                 | Water | Gravel | Sand | Air<br>(%) | Slump<br>(mm) | Strength (MPa) |
| 0.42 | 283                           | 71 (Ternary Cement =<br>78% PC+22%<br>Slag+5% Silica Fume) | 149   | 1051   | 810  | 5-8        | 30±10         | 32             |
| 0.40 | 292 (with 5% SF)              | 73 (Class F fly ash)                                       | 131   | 975    | 819  | 5-8        | 140±40        | 35             |

## **Specimens Curing and Conditioning:**

Twenty-seven 75mm height and 150mm diameter cylindrical size specimens were manufactured at each site using cardboard tube formwork.



- and 40°C at a constant moisture content.
- after the initial curing of one month.

## **Testing:**

- ► Moisture content
- Two indices were used to evaluate the concrete moisture content:
  - Saturation degree
  - Surface Relative Humidity
- ➤ Temperature
- ➢Sorptivity

This measurement was carried out using a commercial apparatus, GWT 4000, developed by Germann Instruments.

wet covering

✤ In order to investigate the effect of temperature, sorptivity tests were performed at 3 different conditioning temperatures of 5, 23

The outdoor exposure samples were placed in outdoor conditions



Surface RH measurement



Temperature measurement









✓ Sorptivity index increases linearly with increasing in conditioning temperature.

W/C=0.42; Laboratory tests

W/C=0.40; Laboratory tests

+ W/C=0.42; Outdoor exposure tests

 $\times$  W/C=0.40; Outdoor exposure tests

> In-situ sorptivity measurements are fast and practicable methods for non-destructive concrete durability evaluation, but to avoid wrong data, test results should be calibrated to the standard laboratory conditions in the terms of concrete moisture content and temperature.